
Simulations and Testing of Retarding Field

Analyzers for Electron Cloud Monitoring

Lee McCuller

07/02/09

Abstract

1 Forward

This work is done as part of the Lee Teng internship at Fermilab with the help
of my supervisor Robert Zwaska. I am also getting support for my project from
Kevin Duel who helped us decide on and draft the test vessel design, and from
Cheng-Yang Tan who does e-cloud simulations and studies.

2 Introduction

My summer project is to assemble a test stand for new Retarding Field Analyz-
ers (RFAs) to be used for electron cloud (ecloud) studies. Along with assembling
this test stand I will be simulating the RFA response using the SIMION pro-
gram and I will be doing some calibration and studies of the RFA response
to test stand input. These RFAs to be be studied are an important tool for
understanding the ecloud in Fermilab’s main injector.

The ecloud is a phenomenon in positively charged beamlines. It is a gas of
electrons that is formed from a cascade of secondary emission electrons from
the beam pipe. The process starts from the residual gas in the chamber. The
beam passes through that and knocks off electrons from the gas. These electrons
are attracted to the beam and so they are sucked into it and ejected from it
at higher energy. These ejected electrons then impact the beam pipe with
enough energy to eject more electrons. This process of heating electrons and
ejecting more secondary emission electrons essentially causes an exponential
generation of electrons, which maxes out once ecloud space charge effects cancel
the acceleration that the beam is giving. All of these electrons push the beam
around and lead to head-tail and multi-bunch instabilities.

This phenomenon is affected by several beam parameters. The heating of
the electrons is sensitive to the flight time of the electrons and to the bunch
lengths and spacings. The generation of electrons is sensitive to the energy
gain and the surface properties of the the beam pipe. And finally the space
charge limitations are affected by beam intensity. Since these factors affect an
exponential process, small changes can have effects with orders of magnitude
differences. The intensity dependence is particularly worrisome in this process,

1



since there is a risk that the ecloud limits the maximum intensity in the project
X upgrades.

The ecloud has been seen at many of the high energy accelerators and it
has been studied in several machines to help characterize it. The difficulty from
these studies is that since it is such a nonlinear process which depends on the
accelerator geometry as well as beam parameters, it behaves uniquely in each
machine. Simulations have been done for the main injector but they can not
replace real data.

2.1 RFA Assembly Design

The retarding field analyzers are sensors that can detect current from an beam
of charged particles. They consist of a collecting plate behind a wire screen.
The wire screen is set at a voltage so that the field that it creates serves as a
high pass filter in the energy of electrons passing through it. The main injector
has had an old RFA taken from an Argonne accelerator [] that has a few design
differences to the model this paper focuses.

The new RFA’s that have been designed for testing use a cupped shape
around the wire grid for field shaping. This gives a natural-defocussing before,
focusing after effect that should reduce the effects of secondary emission the
collection current. Measurements done in the main injector using the previous
RFA’s had a substantial amount of noise to them. The new incarnations hope to
prevent this with not only a better geometry, but they will also have a lowpass
filter and amplification applied in the tunnel. The filter will reduce noise from
the beam RF and the amplification will reduce line noise in transmission.

Tan’s created the new RFA design and compared it to the old Argonne style
RFA’s that have been used.

3 Test Stand Setup

The primary focus of this project is to develop and use a test stand for the RFA.
The design is to use an electron gun to provide a beam of electrons at a known
energy and spread so that we can compare the gun emission current to the RFA
collector current. The primary difficulty in this test stand will be preparing a
vessel to house the gun and RFA in vacuum.

The vessel is designed to emulate the beam pipe effects on the ecloud, as well
as facilitating measurements. It consists of a central pipe with end flanges, one
for connecting the gun and the other for the RFA. In order, there are several
components along the pipe. First is an extrusion to attach vacuum pump,
second is an angled pipe with flange for a viewing window. This angled pipe
meets at the vessel along with another pipe with a flange to attach a mount
for a phosphor screen, to be viewed in the window. immediately after these
connections is a screen visible in ??. This screen will also be present on the
RFA mount to the beam pipe. Ideally the RFA would mount to a hole in the
beam-pipe, but the screen is a compromise to reduce impedance. For the vessel
the screen has the advantage that the electron gun should be calibrated using
the light emitted from electrons off the screen, so the phosphor screen should
not be a requirement.

2



3.1 Vacuum Setup

The vacuum system so far as I know will need to be a roughing pump and turbo
pump with a pressure sensor and its electronics. Baking should not be necessary
since 10−7 Torr should be as good a vacuum as we need.

3.2 Electron Gun Setup

This includes all that is necessary to run the Electron gun. Calibration is the
most important using the auxiliary windows to hold a phosphor screen and
developing a way to translate the screen image into beam parameters for the
RFA. Other issues include setting up the filtering electronics on the RFA and
getting a good readout from it.

3.3 Electronics

4 RFA Simulation

In order to develop a new RFA with characteristics suited for this application,
the program SIMION was used to model the RFA geometry and fields and to
develop a phenomenological model for the system. This program lacks features
such as secondary emission electrons and certain data taking features that would
be useful for this and future projects. I have added some features to more
accurately model the RFAs using this program.

SIMION works in a very modular system. The entire simulation is encapsu-
lated in a workbook, which holds the main coordinate system. Inserted into the
workbook are Potential Array (PA) files which are each a grid of cells containing
either electrodes or free space. The electrodes are set at a voltage and SIMION
’refines’ them to generate the potential at each point in space using an iterative
solution to the laplace equation. These PA files define the electrode geometry of
the simulation and can have reflection or cyllindrical symmetry applied to them.
The workbook represents them in space with their symmetry applied as well as
with arbitrary scaling and orentation transformations. Because solutions to the
laplace equation can be superimposed linearly, SIMION allowes connected elec-
trode regions to be adjusted in real time which it calls fast adjusting the PA’s.
This method becomes useful in user programs.

The RFA simulation uses a workbook in this manner, but requires some
caveats in order to simulate a realistic grid. This is necessary since the grid
requires an extremely dense array to describe its geometry due to its thin wires.
With the wires only 5 cells thick, and the grid only occupying 1/16th of the
true grid area, the PA file is 100mb. The trick used is to transport electrons
from an ideal grid region in the RFA PA to the smaller non-ideal grid, but to
remember the electron’s offsets so that they may be transported back. Toggling
this transport can differentiate results with ideal and non-ideal grids.

My work was to enhance the user program to manage each particle and to
add secondary emmision capabilities. The modification design is highly coupled
to how SIMION fly’s particles through a workbook. The simion userprogram
model allows the program to be as passive as possible. The user program is
a script written in LUA that registers a series of callbacks that SIMION calls
at various stages of the electrons’ lifetimes. Difficulties arise because SIMION

3



treats particles in batches, even when it is actually simulating particles one by
one, so advanced user programs need to have additional structure to account
for this batch mode of operation. User program callbacks are called on a per
particle basis and each callback type has variables registered that correspond to
particle parameters such as location or velocity.

SIMION’s order of opperation is to first read a .fly2 file which describes
the batch size of particles to fly including its size and starting location and
velocity distributions. Then SIMION calls an initialize function on each of the
particles. This function can modify energy or location and essentially override
the characteristics that the .fly2 file had determined. Here one can check for the
first particle and call a beginning of fly function or ”global initialization” type
function. The user program is then allowed to do a fast-adjust on the potentials
before the fly (they can also be done during the fly but this simulation uses
static fields). After all of the particles in the fly have been initialized, they go
through a flying loop. SIMION internally adjusts their postition and velocity
using Runge-Kutta integration over the EM field forces. After that, it checks
for collisions and calls the ”other actions” function. This is where the transport
trick takes place, and also where secondary emmisions are created upon impact
with metal surfaces. At this time the user program can adjust the magnetic and
electric fields seen by the particles.

After all of the particles have impacted a surface, SIMION calls ”terminate”
on each particle. Our program does not need this for each individual so it waits
for the last particle and calls a global ”fly completed” type function. After this is
called SIMION checks if you want to begin another fly and repeats this process
(so it uses the same .fly2 and the user program is responsible for changing
particle parameters between flys).

4.1 Details of Added User Program Enhancements

The developed user program has added two abstract components to manage par-
ticles. It has a particleRun manager which stores all the different parameters
that you want a datapoint to apply. This includes the magnetic field magnitude
and direction, the electron energy, parameters related to secondary emission,
and the number of particles to run at these parameters. This manager is gener-
ated and called directly by the SIMION callback functions to make adjustments.
The particleRun class also stores a queue of future particles to generate from
secondary emission. This queue is necessary since the batch mode operation
does not allow one to generate SE electrons as they are created. They go into
the queue and are created in the next fly. This class also records where particles
impact and other statistics. When the current particleRun has taken enough
data, control moves to the other abstracted component, the runManager. This
class has the duty of recording the data stored in a particleRun to a file and it
has the duty to start new runs with incremented parameters (such as particle
kinetic energy). In implementation, the runManager class uses an iterator to
feed it new particleRun instances.

The choice to use iterators to generate new runs allows one to control the
parameters without needing to modify the particleRun or runManager classes
themselves. The userprogram is given a script file to execute which gives it the
iterator to use for the runManger, allowing a more automated control of data
taking.

4



For individual particle data, the particleRun class also includes a list of
all currently flying particles. This avoids the anonymity that the batch mode
running enforces by allowing individual tagging of particles.

4.2 Details of Grid Transport Trick

As described above, the userprogram employs a trick in order to reduce the
memory requirements of a fullsize realistic grid. To implement this trick, the
workbook employs a series of ”dummy” PA’s. As a particle is flying, it knows
which PA it is currently being influenced by. The userprogram checks this
variable to see if the particle has entered the kickout PA. If so then it employs
some modular arithmetic to determine where in the grid it should be transported
to. This math effectively tiles the grid across the RFA. The offset is recorded
to the particle once moved and the particle flys in the grid PA as normal. the
grid PA is enclosed in a return PA, which the transporter checks for. Once the
particle enters the this PA it is retranslated by its offset. In the flying view
of SIMION, one can see that this does indeed preserve flight continuity. There
are some catches to this trick though. Since the grid is of limited size. The
return PA section must also check to make sure that the particle has not simply
escaped the transverse boundaries of the grid PA. if it has, then it is transported
around the grid and its offsets are adjusted (This oversight led to a reduction
in the percieved efficiency of the RFA under a non-ideal grid). The other catch
is that the transporter must also check that it is not returning the particle to a
spot inside the RFA wall, since the walls are not present in the grid PA.

4.3 Details of Secondary Emission Implementation

All of the abstractions added above were implemented so that secondary emmi-
sion could be modeled with SIMION. SE is difficult to model in SIMION due to
several program limitations. SIMION’s representation of the electrode surfaces
is the minimum necessary to do electric field calculations. It does not store
metal surface properties and, more importantly, it has no knowledge of the sur-
face normal. When a particle impacts a surface, our userprogram detects this,
and knows the location and velocity of the impact. A phenomenological SE yeild
model is employed to determine the number of expected particles generated.

The SE yeild model follows
We use poisson statistics to determine the actual number of SE particle to

create. Each one created is colored differently for inspection purposes. For each
SE electron to generate, we need to know its outgoing energy, and its outgoing
direction. The energy is determined by another model (which currently is just
to use 1/9 the incoming energy). The outgoing direction has a uniform distribu-
tion over the 2π arcradian hemisphere away from the surface. this distribution
is generated in two parts, determining the surface normal, and applying that
distribution to the normal.

Since SIMION represents its surfaces in a grid, generating a realistic surface
normal is a nontrivial process. From boundary conditions, The electric field off
of the surface is always normal to the surface. This fact is used to approximated
the normal in this finite element model. SIMION’s scripting language LUA
exposes a lot of particle data but does not by default have an interface for finding
the electric field in PA’s. Our program uses a current SIMION beta release and

5



activates ”early access mode” to gain this interface in our LUA userprogram.
Each PA has a unique grid size, which sets a scale across which the electric field
should be averaged to get the normal direction. Our computation works in PA
local coordinates to naturally work accross this scale. It takes the electric field
in the 27 cell, 3 by 3 cube of PA grid cells centered at the impact point. It
ignores those cells that are electrodes and the remaining values are averaged.
This vector is then normalized to give the normal. Sign checks are made since
the eletric field lines can be pointing inside or outside the surface. The Runge-
Kutta flying algorithm often has particles that impact just below the electrode
surface, in which case the SE particle can’t escape. Checking for this is most
convenient in these methods while PA coordinates are available, so the surface
normal computation can also flag to toss out SE for this impact.

Once the normal, N is found, the distribution around it must be imple-
mented. This is done by creating a uniform distribution of vectors in the pos-
itive X axis hemisphere, and then rotating these so that the X-axis points in
the direction of the normal. To generate the hemispherical distribution, I used
spherical coordinates and the inverse PDF method for generating θ and φ. The
differential area element for integrating a spherical surface in these coordinates
is r2sin(φ), and r = 1 for a unit sphere. With the inverse PDF method, uni-
formely distributed numbers from 0 to 1 are passed through arccos() to get the
proper distribution for φ. θ can be generated from a uniform distribution from
0 to 2π.

V =

 cos(φ)
cos(θ)sin(φ)
sin(θ)sin(φ)


These parameters are plugged into this vector formula to get their linear

coordinates. I use a rotation matix to point the x-axis through the direction
of the normal. To generate this rotation matrix I arbitrarily choose a vector
orthonormal to N and then use a cross product to get a final orthonormal basis
set. I can then contstruct an orthogonal matrix from this set. In reality, such
an orthogonal matrix has two vector degrees of freedom, a ”looking” direction
which we give, and an orientation direction. Here the orientation direction is
ignored since the components that it affects have a random orientation anyway.

5 Simulation Data

Here will go all of the simulation data. The plots for this are being processed.

6 Measurements

Here I will put the results of the test stand measurements that I have taken.

7 Drawings and Figures

Here I’m just putting all the figures until I figure out what to do with them.

6



Figure 1: Here is a simulation with electrons in blue and contour lines of chamber
voltage in red

Figure 2: here is a simulation of electrons in a magnetic field of 5 Gauss into
the page

Figure 3: Here is a side view of the fully assembled vessel

7



Figure 4: Here is a test RFA used by C.Y. Tan

8


